Valuated Matroid Intersection II: Algorithms
نویسنده
چکیده
Based on the optimality criteria established in Part I, we show a primal-type cyclecanceling algorithm and a primal-dual-type augmenting algorithm for the valuated independent assignment problem: Given a bipartite graph G = (V , V −;A) with arc weight w : A → R and matroid valuations ω and ω− on V + and V − respectively, find a matching M(⊆ A) that maximizes ∑ {w(a) | a ∈ M}+ ω(∂M) + ω−(∂−M), where ∂M and ∂−M denote the sets of vertices in V + and V − incident to M . The proposed algorithms generalize the previous algorithms for the independent assignment problem as well as for the weighted matroid intersection problem, including those due to Lawler (1975), Iri-Tomizawa (1976), Fujishige (1977), Frank (1981), and Zimmermann (1992).
منابع مشابه
Fenchel-type duality for matroid valuations
The weighted matroid intersection problem has recently been extended to the valuated matroid intersection problem: Given a pair of valuated matroids Mi = (V,Bi, ωi) (i = 1, 2) defined on a common ground set V , find a common base B ∈ B1∩B2 that maximizes ω1(B)+ω2(B). This paper develops a Fenchel-type duality theory related to this problem with a view to establishing a convexity framework for n...
متن کاملOn the Degree of Mixed Polynomial Matrices
The mixed polynomial matrix, introduced as a convenient mathematical tool for the description of physical/engineering dynamical systems, is a polynomial matrix of which the coefficients are classified into fixed constants and independent parameters. The valuated matroid, invented by Dress and Wenzel [Appl. Math. Lett., 3 (1990), pp. 33–35], is a combinatorial abstraction of the degree of minors...
متن کاملA weighted independent even factor algorithm
An even factor in a digraph is a vertex-disjoint collection of directed cycles of even length and directed paths. An even factor is called independent if it satisfies a certain matroid constraint. The problem of finding an independent even factor of maximum size is a common generalization of the nonbipartite matching and matroid intersection problems. In this paper, we present a primal-dual alg...
متن کاملMATHEMATICAL ENGINEERING TECHNICAL REPORTS A Weighted Independent Even Factor Algorithm
An even factor in a digraph is a vertex-disjoint collection of directed cycles of even length and directed paths. An even factor is called independent if it satisfies a certain matroid constraint. The problem of finding an independent even factor of maximum size is a common generalization of the nonbipartite matching and matroid intersection problems. In this paper, we present a primal-dual alg...
متن کاملValuated Matroid Intersection I: Optimality Criteria
The independent assignment problem (or the weighted matroid intersection problem) is extended using Dress-Wenzel’s matroid valuations, which are attached to the vertex set of the underlying bipartite graph as an additional weighting. Specifically, the problem considered is: Given a bipartite graph G = (V , V −;A) with arc weight w : A → R and matroid valuations ω and ω− on V + and V − respectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 9 شماره
صفحات -
تاریخ انتشار 1996